NLRX1 negatively modulates type I IFN to facilitate KSHV reactivation from latency

نویسندگان

  • Zhe Ma
  • Sharon E Hopcraft
  • Fan Yang
  • Alex Petrucelli
  • Haitao Guo
  • Jenny P-Y Ting
  • Dirk P Dittmer
  • Blossom Damania
چکیده

Kaposi's sarcoma-associated herpesvirus (KSHV) is a herpesvirus that is linked to Kaposi's sarcoma (KS), primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD). KSHV establishes persistent latent infection in the human host. KSHV undergoes periods of spontaneous reactivation where it can enter the lytic replication phase of its lifecycle. During KSHV reactivation, host innate immune responses are activated to restrict viral replication. Here, we report that NLRX1, a negative regulator of the type I interferon response, is important for optimal KSHV reactivation from latency. Depletion of NLRX1 in either iSLK.219 or BCBL-1 cells significantly suppressed global viral transcription levels compared to the control group. Concomitantly, fewer viral particles were present in either cells or supernatant from NLRX1 depleted cells. Further analysis revealed that upon NLRX1 depletion, higher IFNβ transcription levels were observed, which was also associated with a transcriptional upregulation of JAK/STAT pathway related genes in both cell lines. To investigate whether IFNβ contributes to NLRX1's role in KSHV reactivation, we treated control and NLRX1 depleted cells with a TBK1 inhibitor (BX795) or TBK1 siRNA to block IFNβ production. Upon BX795 or TBK1 siRNA treatment, NLRX1 depletion exhibited less inhibitory effects on reactivation and infectious virion production, suggesting that NLRX1 facilitates KSHV lytic replication by negatively regulating IFNβ responses. Our data suggests that NLRX1 plays a positive role in KSHV lytic replication by suppressing the IFNβ response during the process of KSHV reactivation, which might serve as a potential target for restricting KSHV replication and transmission.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of IRF4 in IFN-stimulated gene induction and maintenance of Kaposi sarcoma-associated herpesvirus latency in primary effusion lymphoma cells.

IFN regulatory factor (IRF) 4 is a hematopoietic cell-specific transcription factor that regulates the maturation and differentiation of immune cells. Using an inducible expression system, we found that IRF4 directly induced a specific subset of IFN-stimulated genes (ISGs) in a type I IFN-independent manner in both epithelial and B cell lines. Moreover, Kaposi sarcoma-associated herpesvirus (KS...

متن کامل

Role of IRF4 in IFN-stimulated gene induction and maintenance of KSHV latency in primary effusion lymphoma cells

Interferon regulatory factor (IRF) 4 is a hematopoietic cell-specific transcription factor that regulates the maturation and differentiation of immune cells. Using an inducible expression system, we found that IRF4 directly induced a specific subset of interferon-stimulated genes (ISG) in a type I interferon (IFN)-independent manner in both epithelial and B cell lines. Moreover, Kaposi sarcoma-...

متن کامل

Reactive Oxygen Species Hydrogen Peroxide Mediates Kaposi's Sarcoma-Associated Herpesvirus Reactivation from Latency

Kaposi's sarcoma-associated herpesvirus (KSHV) establishes a latent infection in the host following an acute infection. Reactivation from latency contributes to the development of KSHV-induced malignancies, which include Kaposi's sarcoma (KS), the most common cancer in untreated AIDS patients, primary effusion lymphoma and multicentric Castleman's disease. However, the physiological cues that t...

متن کامل

Nucleophosmin Phosphorylation by v-Cyclin-CDK6 Controls KSHV Latency

Nucleophosmin (NPM) is a multifunctional nuclear phosphoprotein and a histone chaperone implicated in chromatin organization and transcription control. Oncogenic Kaposi's sarcoma herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma, primary effusion lymphoma (PEL) and multicentric Castleman disease (MCD). In the infected host cell KSHV displays two modes of infection, the latency and...

متن کامل

KSHV Reactivation from Latency Requires Pim-1 and Pim-3 Kinases to Inactivate the Latency-Associated Nuclear Antigen LANA

Host signal-transduction pathways are intimately involved in the switch between latency and productive infection of herpes viruses. As with other herpes viruses, infection by Kaposi's sarcoma herpesvirus (KSHV) displays these two phases. During latency only few viral genes are expressed, while in the productive infection the virus is reactivated with initiation of extensive viral DNA replicatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017